#include #include #include "direct_insert_sort.h" /* 直接插入排序算法 */ /* 1.首先将record分成两个表,一个是有序表:只含有一个元素,另一个是无序表:含record_size - 1个元素 2.首先j = i -1找到有序表的表尾,从无序表取头节点record[i],先保存在temp里面,然后依次从尾到头遍历有序表, 有序表工作下标每次向前移动一位, 找到temp > record[j]的位置,或者已经到达有序表的表头减一(越界)j < 0 停止移动j工作下标, record[j + 1] = temp 完成本个节点的插入,i++无序表表头++。 3.循环2步骤,直到无序表表头下标越界record数组,停止。 */ int pkt_direct_insert_sort(int *record, int record_size) { int i, j; /* i是有序表的表尾,j是无序表的表头 */ int temp; for (i = 1; i < record_size; i++) /* 无序表表头i到达数组的最后的后一位,已越界,停止循环 */ { j = i - 1; /* 计算有序表的尾节点下标 */ temp = record[i]; while (temp < record[j] && j >= 0) { record[j + 1] = record[j]; /* 向后移动一位,给temp腾位置 */ j--; } record[j + 1] = temp; /* 插入temp */ } } /* shell排序 */ int pkt_shell_sort(int *record, int record_size) { int i, j; /* i是有序表的表尾,j是无序表的表头 */ int temp; int d; for (d = record_size / 2; d > 0; d /= 2) { for (i = d; i < record_size; i++) /* i无序表头到达数组的最后的后一位,已越界,停止循环 */ { j = i - d; /* 计算有序表的尾节点下标 */ temp = record[i]; while (temp < record[j] && j >= 0) { record[j + d] = record[j]; /* 向后移动一位,给temp腾位置 */ j -= d; } record[j + d] = temp; /* 插入temp */ } } } 5/* 一趟快速排序 */ int pkt_quick_pass(int *record, int i, int j) { int temp; /* 基准 */ temp = record[i]; /* 基准 */ while (i < j) { while (i < j && record[j] >= temp) /* 从下界比较,在高的一边找小于temp的值的下标j */ { j--; } if (i < j) /* 证明由于 record[j] >= temp 条件不成立退出的while */ record[i] = record[j]; /* 交换高一边的元素到低的一边去 */ while (i < j && record[i] <= temp) /* 从上界比较,在低的一边找大于temp的值的下标i */ { i++; } if (i < j) record[j] = record[i]; /* 交换低一边的元素到高的一边去 */ } record[i] = temp; /* 此时肯定是 i == j,基准的位置i保存基准 */ return i; /* 返回本次比较的基准位置 */ } /* 快速排序:递归实现 */ void pkt_quick_sort(int *record, int low, int high) { int mid; /* 基准 */ if (low < high) { mid = pkt_quick_pass(record, low, high); /* 一趟快速排序 */ pkt_quick_sort(record, low, mid - 1); /* 基准左边快速排序 */ pkt_quick_sort(record, mid + 1, high); /* 基准右边快速排序 */ } } int main(int argc, char **argv) { int arry[] = {1, 5, 0, 4, 3, 8, 9, 2, 7, 6}; pkt_quick_sort(arry, 0, sizeof(arry) / sizeof(arry[0]) -1); for (int i = 0; i < sizeof(arry) / sizeof(arry[0]); i++) { printf("%d\n", arry[i]); } return 0; }